Parametrizations of flag varieties

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametrizations of Flag Varieties

For the flag variety G/B of a reductive algebraic group G we define and describe explicitly a certain (set-theoretical) cross-section φ : G/B → G. The definition of φ depends only on a choice of reduced expression for the longest element w0 in the Weyl group W . It assigns to any gB a representative g ∈ G together with a factorization into simple root subgroups and simple reflections. The cross...

متن کامل

Universal Rational Parametrizations and Toric Varieties

This note proves the existence of universal rational parametrizations. The description involves homogeneous coordinates on a toric variety coming from a lattice polytope. We first describe how smooth toric varieties lead to universal rational parametrizations of certain projective varieties. We give numerous examples and then discuss what happens in the singular case. We also describe rational ...

متن کامل

Combinatorics in affine flag varieties

The Littelmann path model gives a realisation of the crystals of integrable representations of symmetrizable Kac-Moody Lie algebras. Recent work of Gaussent-Littelmann [GL] and others [BG] [GR] has demonstrated a connection between this model and the geometry of the loop Grassmanian. The alcove walk model is a version of the path model which is intimately connected to the combinatorics of the a...

متن کامل

Shelling Totally Nonnegative Flag Varieties

In this paper we study the partially ordered set Q of cells in Rietsch’s [20] cell decomposition of the totally nonnegative part of an arbitrary flag variety P ≥0 . Our goal is to understand the geometry of P ≥0 : Lusztig [13] has proved that this space is contractible, but it is unknown whether the closure of each cell is contractible, and whether P ≥0 is homeomorphic to a ball. The order comp...

متن کامل

Equivariant Sheaves on Flag Varieties

We show that the Borel-equivariant derived category of sheaves on the flag variety of a complex reductive group is equivalent to the perfect derived category of dg modules over the extension algebra of the direct sum of the simple equivariant perverse sheaves. This proves a conjecture of Soergel and Lunts in the case of flag varieties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of the American Mathematical Society

سال: 2004

ISSN: 1088-4165

DOI: 10.1090/s1088-4165-04-00230-4